I find it interesting how people get more comfortable with a concept, like self-flying planes, the more they understand the level of autonomy in modern planes.
You could consider modern planes as self-flying, in that they can autonomously execute a flight plan created by pilots. However, these aircraft cannot think for themselves; they will follow the flight plan until it’s changed
For example, when pilots take off the seat-belt sign, chances are you’re in a self-flying plane. With this information — and given the number of successful flights every day — the concept of autonomous aircraft starts to sound like a safe, feasible innovation.
In commercial aircraft, pilots input the flight plan into the flight management system (FMS) when the aircraft is still on the ground. The pilots usually activate this autopilot a few minutes after takeoff. The autopilot typically remains engaged until a few minutes before landing.
However, this isn’t always the case. In low visibility, if the aircraft and runway are certified for autonomous landings, the plane can guide itself to a safe, smooth landing.
Pilots are there to manage changes and risky situations like diversions, turbulence or emergency scenarios. They are a safety feature within the cockpit, monitoring what is happening on the plane. For instance, it’s the pilots’ job to ensure the autopilot stays on course; if it fails, they must take over.
So, can we say that the aviation industry has beaten the automotive industry in the race for autonomy? Not quite. Just like the automotive industry, there are different autonomous vehicle classifications.
So, how close are we to safe, fully autonomous aircraft? Let’s shine a light on the often-invisible autonomous innovations in the aerospace industry.
Thank you for your message. It has been sent.
Please Check Your Email